Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными

Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными

Цена: 1000 грн.

Автор: Андреас Мюллер, Сара Гвидо

Издательство: Диалектика

Язык: русский

Кол-во страниц: 480

Формат: 70×100/16

Нет в наличии

Артикул: 978-5-9908910-8-1 Категория: Product ID: 6562

Описание

Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными

Эта полноцветная книга — отличный источник информации для каждого, кто собирается использовать машинное обучение на практике. Ныне машинное обучение стало неотъемлемой частью различных коммерческих и исследовательских проектов, и не следует думать, что эта область — прерогатива исключительно крупных компаний с мощными командами аналитиков.
Машинное обучение стало неотъемлемой частью различных коммерческих и исследовательских проектов, начиная от постановки медицинского диагноза c последующим лечением и заканчивая поиском друзей в социальных сетях. Многие полагают, что машинное обучение могут использовать только крупные компании, обладающие мощными командами аналитиков
В книге «Введение в машинное обучение с помощью Python» описывается как можно самостоятельно и c удивительной легкостью построить модели машинного обучения (Machine LearningML). Прочитав эту книгу, вы сможете построить свою собственную систему машинного обучения, которая позволит выяснить настроения пользователей Твиттера или получить прогнозы по поводу глобального потепления
Машинное обучение заключается в извлечении знаний из данных. Это научная область, находящаяся на пересечении статистики, искусственного интеллекта и компьютерных наук и также известная как прогнозная аналитика или статистическое обучение. В последние годы применение методов машинного обучения в повседневной жизни стало обыденным явлением
Книга «Введение в машинное обучение с помощью Python» является вводной и не требует предварительных знаний в области машинного обучения или искусственного интеллекта
Область применения машинного обучения безгранична и, учитывая все многообразие данных, имеющихся на сегодняшний день, ограничивается лишь вашим воображением
Об авторах
Андреас Мюллер получил ученую степень доктора наук по машинному обучению в Боннском университете.
В течение года он работал на должности специалиста по машинному обучению в компании Amazon, занимаясь решением прикладных задач в области компьютерного зрения. В настоящий момент Андреас работает в Центре изучения данных Нью-Йоркского университета. В течение последних четырех лет он стал куратором и одним из ключевых разработчиков библиотеки scikit-learn — популярного инструмента машинного обучения, широко используемого в промышленности и науке. Кроме того, Андреас является автором и разработчиком еще нескольких популярных пакетов машинного обучения. Свою миссию он видит в том, чтобы создавать инструменты с открытым программным кодом, которые позволяют устранить препятствия, мешающие более активному использованию машинного обучения в прикладных задачах, а также содействуют продвижению воспроизводимой науки (reproducible science) и упрощают применение высокоточных алгоритмов машинного обучения.
Сара Гвидо — специалист по анализу данных, имеет большой опыт работы в стартапах. Она имеет степень магистра по информатике, которую получила в Мичиганском университете. В настоящее время проживает в Нью-Йорке. Сфера ее интересов — язык Python, машинное обучение, большие объемы данных и мир новейших технологий. Совсем недавно Сара стала ведущим специалистом по анализу данных в компании Bitly. Помимо этого, она является постоянным спикером на конференциях по машинному обучению.
Предисловие 15
Глава 1. Введение 21
Глава 2. Методы машинного обучения с учителем 53
Глава 3. Методы машинного обучения без учителя
и предварительная обработка данных 177
Глава 4. Типы данных и конструирование признаков 269
Глава 5. Оценка и улучшение качества модели 319
Глава 6. Объединение алгоритмов в цепочки и конвейеры 385
Глава 7. Работа с текстовыми данными 407
Глава 8. Подведение итогов 451
Предметный указатель 465

Детали

Название

Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными

Автор

,

Издательство

Диалектика

Язык

русский

Количество страниц

480

Иллюстрации

Нет иллюстраций

Формат, мм

70×100/16

Бумага

офсетная

ISBN

978-5-9908910-8-1

Штрихкод

9785990891081

Переплёт

Твердый

Отзывы

Отзывов пока нет.

Будьте первым, кто оставил отзыв на “Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными”

Ваш адрес email не будет опубликован. Обязательные поля помечены *